翻訳と辞書
Words near each other
・ Iwiec
・ Iwierzyce
・ Iwig
・ Iwiji
・ Iwikau Te Heuheu Tukino III
・ Iwikauikaua
・ Iwasaki Castle
・ Iwasaki Tsunemasa
・ Iwasaki Yanosuke
・ Iwasaki Yatarō
・ Iwasaki's snail-eater
・ Iwasaki, Aomori
・ Iwasawa
・ Iwasawa algebra
・ Iwasawa conjecture
Iwasawa decomposition
・ Iwasawa group
・ Iwasawa manifold
・ Iwasawa Station
・ Iwasawa theory
・ Iwase
・ Iwase (surname)
・ Iwase Dam
・ Iwase District, Fukushima
・ Iwase Province
・ Iwase Station
・ Iwase, Fukushima
・ Iwase, Ibaraki
・ Iwashi Uri Koi Hikiami
・ Iwashima Station


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Iwasawa decomposition : ウィキペディア英語版
Iwasawa decomposition
In mathematics, the Iwasawa decomposition KAN of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (a consequence of Gram–Schmidt orthogonalization). It is named after Kenkichi Iwasawa, the Japanese mathematician who developed this method.
==Definition==

*''G'' is a connected semisimple real Lie group.
* \mathfrak_0 is the Lie algebra of ''G''
* \mathfrak is the complexification of \mathfrak_0 .
*θ is a Cartan involution of \mathfrak_0
* \mathfrak_0 = \mathfrak_0 \oplus \mathfrak_0 is the corresponding Cartan decomposition
* \mathfrak_0 is a maximal abelian subalgebra of \mathfrak_0
*Σ is the set of restricted roots of \mathfrak_0 , corresponding to eigenvalues of \mathfrak_0 acting on \mathfrak_0 .
+ is a choice of positive roots of Σ
* \mathfrak_0 is a nilpotent Lie algebra given as the sum of the root spaces of Σ+
*''K'', ''A'', ''N'', are the Lie subgroups of ''G'' generated by \mathfrak_0, \mathfrak_0 and \mathfrak_0 .
Then the Iwasawa decomposition of \mathfrak_0 is
:\mathfrak_0 = \mathfrak_0 \oplus \mathfrak_0 \oplus \mathfrak_0
and the Iwasawa decomposition of ''G'' is
:G=KAN
The dimension of ''A'' (or equivalently of \mathfrak_0 ) is called the real rank of ''G''.
Iwasawa decompositions also hold for some disconnected semisimple groups ''G'', where ''K'' becomes a (disconnected) maximal compact subgroup provided the center of ''G'' is finite.
The restricted root space decomposition is
: \mathfrak_0 = \mathfrak_0\oplus\mathfrak_0\oplus_\mathfrak_
where \mathfrak_0 is the centralizer of \mathfrak_0 in \mathfrak_0 and \mathfrak_ = \_0 \} is the root space. The number
m_= \text\,\mathfrak_ is called the multiplicity of \lambda.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Iwasawa decomposition」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.